

Emotional Awareness and Psychophysiological Markers of Performance on the Iowa Gambling Task

Cory Inman, B.A., Matthew Mumaw, M.A., & Tricia King, Ph.D.

Introduction

The Somatic Marker Hypothesis (SMH)

➤ Proposes that in complex decision-making situations that entail reward, punishment, and uncertainty, physiological emotional processes act as biasing markers that influence decisions to an appropriate action.

>Antonio Damasio (1994) has shown that patients with lesions in the ventro-medial prefrontal cortex (VMPFC) have particular issues in day-to-day decision-making.

>Support for the SMH through two main findings:

- ❖Typical participants:
- Preferred good choices before they had conceptual knowledge of advantageous decisions in the IGT
- Produced somatic markers before bad choices
- **❖VMPFC** Lesion Patients:
- •No definitive preference of good choices over bad choices through out IGT
- Lack of somatic markers before any choices
- >Neuropsychological mechanisms involved:
- ❖In typicals, after experience with the task, reactivation of specific somatosensory patterns occurs when participants encounter certain previously encoded situations (Bechara et al., 2000).
- •Two proposed pathways:
- •Body-Loop- The body physically changes in reaction to activation of the VMPFC. These changes are sent to the somatosensory cortices producing a physiological response.
- •As-if Body Loop Re-activation signals bypass the body and are sent directly to the somatosensory cortices, which produce the appropriate pattern marking a situation good or bad.

Somatic Markers

- >Skin Conductance Responses
- Biasing response to a given emotional, decision making situation
- Occurs within the 4 seconds preceding a card choice after experience in the task
- ➤ Reward or Punishment SCR
- *Response to the outcome of a given trial
- ♦Occurs within the 4 seconds after a card choice
- ≽Heart Rate
- *Crone et al. (2004) have found evidence for the slowing of interbeat intervals (IBIs) as a somatic warning signal in good performers.

Emotional Awareness

- >According to the SMH, these psychophysiological responses may function at two different visceral levels:
- ❖Conscious aware level
- Unconscious unaware level
- >The participant's ability to distinguish between the two is dependent on the individual's level of emotional awareness.
- >Emotional awareness is a continuous personality trait that may have an influence on the participant's ability to distinguish promising options throughout the IGT.

Methods

Hypotheses

- On the IGT, those with High levels of Emotional Awareness will:
 - 1) Make more advantageous decisions
 - 2) Exhibit greater change from baseline of anticipatory skin conductance level before risky decisions.
 - Exhibit a slower heart rate before making good decisions.

Participants

- >Thirty-seven participants were recruited at Georgia State University from undergraduate psychology classes in partial fulfillment of course requirements.
- >13 Males, 24 Females, ages ranged from 18 to 50 years (M=21.32, SD=5.97)
- ➤15 Caucasian, 14 African American, 3 Asian, 1 Cape Verdean, 1 East African, 1 Pacific Islander, and 2 unknown participants.

The Iowa Gambling Task

>Designed to imitate real life decision-making through reward, punishment, and uncertainty of outcomes in a laboratory setting (Bechara et al., 1994).

- ➤Includes:
- 4 Decks of Cards; A, B, C, D
- ♦4 Decks of
- *\$2000 of Credit
- >Participants must determine:
- ❖Good Decks
- •Yield a lower immediate gain but a smaller future loss; long term net gain
- ◆Bad Decks
- •Yield a high immediate gain but larger future loss; a long term net loss

Bad Decks Good Decks A B C D Gain/Deck: \$100 \$100 \$50 \$50 Losses/10 Cards: \$1250 \$1250 \$250 \$250 Net/10 Cards: -\$250 -\$250 \$250 \$250 Rewards/10 Cards: 5 1 5 1

Figure 1. Describes the reward and punishment contingencies per deck of the IGT

Toronto Alexithymia Scale-20

- ➤A 20 item self-report scale aimed at measuring deficits in identifying and describing emotions. (Bagby et al., 1994) ➤1 (strongly disagree) to 5 (strongly agree) scale
- ❖ Ψ TAS score = \spadesuit Emotional awareness and vice versa \diamondsuit This samples TAS-20 scores ranged from 25 to 74 (M=44.83, SD=12.53).
- >The Difficulty Identifying Feelings factor
- *Ex.: "I am often puzzled by sensations in my body."

Results

>Hypothesis 1

- . Correlations were run between:
- TAS-DIF factor and TAS-20 total score
- •Good minus bad choices per 20 card block

♦Our main result is that block 3 (trials 41-60) shows significant positive correlations with the DIF factor and total scores for the TAS-20 for the whole group and females, as seen in Table 1.

>Hypothesis 2

❖Correlations were run between:

- Z-score of the TAS-20
- Mean baseline SCL (from 4 seconds immediately before anticipatory period) minus mean anticipatory SCL (4 seconds before choice) for bad choices per 20 card block.
- Most of correlation coefficients were not significantly related, as seen in Table 2.
- >Hvpothesis
- *Correlations were run between:
- Z-scores of the TAS-20
- •Anticipatory inter-beat interval (IBI) for good choices
- ❖The correlations were not significant, as seen in Table 3.

Table 1

Correlations between Z-Score of the Toronto Alexithymia Scale (TAS-20)

TAS-20	Block 1	Block 2	Block 3	Block 4	Block 5	Total
DIF Factor	.12	.15	.40*	.31	.00	.29
Male	10	03	.41	.28	29	.03
Female	.20	.32	.41*	.39*	.19	.47*
Total TAS-20	.11	.16	.35*	.24	06	.17
Male	28	19	.16	.10	22	12
Female	08	.40*	.42*	.35	.02	.34

*p<.05

Table 2

Correlations between Z-Scores of the Toronto Alexithymia Scale (TAS-20) and the difference in averaged skin conductance level (SCL) between the baseline and anticipatory periods for bad choices per 20

TAS ^b 26 ^k	Block 1	Block 2	Block 3	Block 4	Block 5	
DIF Factor	29	06	.21	.16	03	
Male	.18	40	41	.02	004	
Female	43*	02	.10	.21	04	
Total TAS-20	33*	03	.12	.23	.03	
Male	05	41	.24	.09	.006	
Female	41*	.009	.008	.26	.04	

*p<.05

Table 3

Correlations between Z-scores of the Toronto Alexithymia Scale (TAS-20) and the anticipatory inter-beat interval (IBI) for good choices per 20 card block

TAS-20	Block 1	Block 2	Block 3	Block 4	Block 5
DIF Factor	007	10	17	12	07
Male	19	48	51	46	36
Female	.25	.23	.18	.22	.18
Total TAS-20	.02	10	15	11	08
Male	06	37	38	38	34
Female	.35	.23	.18	.21	.19
*p<.05					

Discussion

➤ Hypothesis 1

- >Lower emotional awareness is associated with more advantageous decisions during the 'hunch' period (Bechara et al., 2005)
 - *Block three of this study is considered to be part of the 'hunch' period in which participants begin to distinguish the good from the bad decks.
 - Those who were less emotionally aware may have taken a more rational and cognitive approach to the task through following the instructions rather than their emotional responses.
 - •Yechiam et al. (2005) proposed the expectancy-valence model to elucidate the cognitive strategies used in the IGT.
- >Those who were *more emotionally aware* may have been more impulsive.
 - >The initial emotionally encoded somatic patterns may have been encoded for the wrong decks.

≻Hypothesis 2 and 3

>The psychophysiological hypotheses were not supported by this study's findings.

>I imitations

- No defined and prompted period for the participant to think about the next card choice
 Time given was potentially too short in
- Not enough time for SCL to return to baseline

duration ❖Not enough t ➤Future Research

- Cognitive Models of the decision-making on the Iowa Gambling Task
- *Expectancy-Valence Model (Stout et al.,
- >Other psychophysiological correlates
- ❖Facial Electromyography (EMG)
- Electroencephalogram (EEG)Functional Magnetic Resonance Imaging
- ❖Positron Emission Tomography (PET)

Special Appreciation to Dr. Tricia King and her lab for their assistance with data collection, processing, and analyses. For more information please email CorySInman@gmail.com